Prediction wrappers for fitted models with h2o engine that include data conversion, h2o server cleanup, and so on.
Usage
h2o_predict(object, new_data, ...)
h2o_predict_classification(object, new_data, type = "class", ...)
h2o_predict_regression(object, new_data, type = "numeric", ...)
# S3 method for `_H2OAutoML`
predict(object, new_data, id = NULL, ...)
Arguments
- object
An object of class
model_fit
.- new_data
A rectangular data object, such as a data frame.
- ...
Other options passed to
h2o::h2o.predict()
- type
A single character value or
NULL
. Possible values are"numeric"
,"class"
,"prob"
,"conf_int"
,"pred_int"
,"quantile"
,"time"
,"hazard"
,"survival"
, or"raw"
. WhenNULL
,predict()
will choose an appropriate value based on the model's mode.- id
Model id in AutoML results.
Value
For type != "raw", a prediction data frame with the same number of
rows as new_data
. For type == "raw", return the result of
h2o::h2o.predict()
.
Examples
if (h2o_running()) {
spec <-
rand_forest(mtry = 3, trees = 100) %>%
set_engine("h2o") %>%
set_mode("regression")
set.seed(1)
mod <- fit(spec, mpg ~ ., data = mtcars)
h2o_predict_regression(mod$fit, new_data = head(mtcars), type = "numeric")
# using parsnip
predict(mod, new_data = head(mtcars))
}